PROJECT TITLE

Farmer-Participatory Integrated Watershed Management: Adarsha Watershed, Kothapally India. An Innovative and Upscalable Approach

AUTHORS

ABSTRACT

This paper briefly describes the tools and methods used in research and development for integrated natural resources management. They have been evolving over the years in order to tackle the complexities of farming systems in marginal areas, and the issues of environmental change in ecoregional research. The integrated farmer-participatory watershed management process involves: Agro-ecological zoning, farming systems research, systems analysis to select best-bet options, upscaling research results, identification of products with competitive advantage for local and regional markets, and the design and implementation of a science-based action plan. The plan includes technical assistance, supervised credit, strengthening communal cohesion through women’s and farmers’ groups, increasing marketing opportunities by concentrating the supply in quantity and quality, quality control of the products, product development to add value, and market studies for the products developed. The impact on the production systems is briefly described.

LEAD CENTRE AND KEY PARTNERS

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Farmers of Kothapally through the Watershed Association, Watershed Committee, user groups (UGs), and self-help groups (SHGs)
Background and rationale

The semi-arid tropics (SAT) are generally characterized by highly variable and low rainfall, low productivity soils and poor development infrastructure. It is these factors that are largely responsible for poverty in the rainfed areas of the SAT. Moreover, the fragile ecosystems of the dry areas are prone to degradation. Widespread poverty, hunger and malnutrition, with complex and diverse socioeconomic characteristics, make these areas challenging for researchers and development professionals.

Watershed management is increasingly being recognized as the ideal approach for integrated natural resources management in rainfed areas. About 51% of India’s geographical area (329 million ha) is categorized as degraded, most of which occurs in rainfed agro-eco systems. About 70% of the population is dependent on agriculture, and two thirds of the cropped area is dependent on rainfall without any protective irrigation (Wani et al. 2001).

Problem

Rainfed arable lands are predominant (80%) worldwide and contribute 60% of the world’s cereal output. In developing countries up to 70% of the population depends directly or indirectly on agriculture, and 560 million poor people live in the semi-arid tropics. Most of the rainfed areas in developing countries suffer from one or another form of land degradation. Currently the average productivity of rainfed areas in the SAT is around 800-1 000 kg ha⁻¹. Several studies have identified the main constraints for increased productivity in the tropics as low rainwater use efficiency for crop production (35-45%), inherent low soil fertility, inappropriate soil, water and nutrient management practices, low adoption of stress-tolerant cultivars of crops, insufficient pest management options and poverty (inability to invest for necessary inputs). Due to variations in seasonal rains during the crop growing period, crops may face drought and sometimes waterlogging due to torrential downpours causing runoff. In order to conserve rainwater, minimize land degradation, improve groundwater recharge, increase crop intensity and crop productivity a watershed management approach is adopted (Kerr et al. 2000; Samra 1997; Wani et al. 2002). The success of watershed management largely depends on the community’s participation. In a recent review (Joshi et al. 2000; Kerr et al. 2000) on the watershed projects in India, it was observed that most watershed projects did not address the equity issues of benefits, community participation, scaling-up approaches, monitoring and evaluation. Moreover, most of these projects relied heavily on government investments and were structure-driven (rainwater harvesting and soil conservation structures), and failed to address the issue of the efficient use of natural resources (soil and water). This is mainly due to the lack of technical support to such projects implemented by NGOs (Wani et al. 2001).

Objectives

The overall objective of the project was to enhance and sustain productivity in soils of...
medium to high water holding capacity in the intermediate rainfall ecoregion with emphasis on arresting soil degradation.

The activities adopted to meet these objectives were (ICRISAT 2002):

• Characterization of the natural resource base, and identification of physical and socioeconomic constraints for sustainable production.

• Application of integrated, cost-effective, soil-water-nutrient management (SWNM) practices appropriate to farmers’ resources and the natural resources of the ecosystem.

• Rehabilitation of degraded soils, and studies on the effects of integrated SWNM strategies on system profitability and sustainability.

• Integration and evaluation of the technosocioeconomic feasibility of promising strategies for crop intensification and reduction of soil degradation, and to learn lessons on the benefits of scaling-up and scaling-out of watershed-based IGNRM to other parts of the SAT.

Approach

The main components of the participatory consortium approach for community watersheds are:

• Involvement of government authorities in the consortium from the beginning.

• Formation of consortiums of local, regional, national and international research and development institutions for providing technical support to the NGOs and farmers.

• Refinement of technologies and on-farm strategic research experimentation by farmers with technical support from the consortium partners.

The process/approach is depicted in Figure 1.

Integrated watershed management - ICRISAT’s innovative consortium model

A new farmer participatory consortium model for efficient management of natural resources emerged from the lessons learnt from long-term watershed-based research led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and national partners. The important lessons learnt from earlier watershed-based research showed a lack of:

• equity in the benefits to small holders and landless;

• sustainability in the management of watersheds after cessation of the project;

• community participation in watersheds;

• scaling-up methods and models;

• monitoring and evaluation of the impacts of watershed interventions;

• holistic approaches in the technical support to most development projects implemented by NGOs.

The important components of the new model, which are distinctly different from earlier models, (Wani et al. 2002) are:

1. Farmers in the watershed area collectively identify and prioritize the problems for possible technical interventions.

2. Participatory planning and implementation of watershed research and development involves all stakeholders. Farmers’ groups selected the sites for rainwater harvesting structures, as well as cropping systems and varieties with technical support from the consortium partners.

3. New science and technology tools such as remote sensing, geographical information system, photogrammetry, digital terrain modelling and crop simulation models are applied.
FIGURE 1 Process of participatory consortium approach through watersheds

- Problem diagnosis and assessment
- Identification of tested technologies and evaluated policy and institutional options

Formation of research consortium
- Government + Research and development institution + NGO
Through discussions to achieve shared goal

Selection of benchmark nucleus watersheds
- Representative benchmark site identification + PRA, RRA + transect walk + Gram-sabha

Watershed consortium formation and formulation of operational strategy
- Watershed association + Watershed consortium (elected) + User groups + Self-help groups

Negotiated watershed development plan based on participatory identification of constraints and location-specific needs

Baseline characterization and agro-ecological potential research
- Weather data, data on soils, crops, education, incomes, simulation models + PRAs and RRAs for identifying major constraints + Household surveys + Baseline data for impact assessment and bioeconomic modelling

Agro-ecological potential

Constraint analysis and identification of intervention options

Participatory evaluation and refinement of best-bet IGNRM options
- Evaluation of on-farm conservation measures
 - Integrated SWNM
 - IPM
 - Improved crops/cropping systems
- Community level SWNM options
- Common property resources development

Institutional and policy analysis; monitoring surveys

Adoption and impact assessment

Community watershed development maps; bioeconomic model inputs

Viable institutional and policy options

Sustainable community watershed management

Technical, institutional and policy lessons

Upscalable community watershed development model
Knowledge flow is facilitated by linking successful on-station watersheds and on-farm watersheds for strategic research.

A holistic system approach for watershed management for livelihood improvement is adopted, instead of solely soil and water conservation.

A consortium of international, national, governmental and non-governmental organizations (NGOs) provide technical backstopping to community watershed programmes.

Increased individuals’ participation is ensured by providing tangible economic benefits. The emphasis on in situ conservation of rainwater is translated into increased soil water availability, that is in turn translated into increased productivity through integrated genetic and natural resource management (IGNRM).

The Islanding approach is used, in which a microwatershed is established within the watershed to serve as a site of learning.

For technical development and inputs on individual/private land, users pay (i.e., no subsidy), whereas for community-based interventions it is largely the government that pays, with only 10–30% contributions from beneficiaries.

Scaling up and technology dissemination is facilitated by using benchmark sites as training sites for partners and farmers, and for sensitizing policy makers.

Cost-effective and environmentally friendly soil, water, nutrient, crop and pest management practices are used for wider and quicker adoption, and to raise the carrying capacity of the system.

Traditional knowledge is combined with new knowledge for the efficient management of natural resources.

Capacity building of local farmers and NGOs is carried out to promote the effective dissemination of technologies.

Empowerment of communities, individuals and the strengthening of village institutions is achieved through concerted efforts to foment sustainable development.

Youth, women and landless people are involved in income-generating micro-enterprises within watershed projects.

Continuous monitoring and participatory evaluation by researchers and stakeholders is carried out to assess the overall performance of watershed management.

On-station SWNM research in a watershed at ICRISAT Centre, Patancheru, began in 1976 and has yielded impressive successes. The execution of technologies at ICRISAT and in farmers’ fields was undertaken early on to demonstrate the potential benefits of these technologies in enhancing the productivity of rainfed farming systems. Based on the lessons learnt a new IGNRM model was developed and evaluated from 1999 onwards. The new integrated watershed management model was developed by establishing five on-farm and three on-station watersheds covering various agro-ecological, socioeconomic and technological situations in India, Thailand and Vietnam, with technical backstopping by ICRISAT. One of the successful cases, the on-farm Adarsha watershed at Kothapally in Andhra Pradesh, India, is described hereunder.

Adarsha watershed, Kothapally

The watershed is located in Kothapally village (longitude 78° 5’ to 78° 8’E and latitude 17° 20’ to 17° 24’N) in Ranga Reddy district, Andhra Pradesh, nearly 40 km from ICRISAT Centre, Patancheru. It covers 465 ha of which 430 ha are cultivated and the rest are wasteland. The watershed is characterized by an undulating topography with an average slope of about 2.5%. Soils are predominantly Vertisols and associated soils (90%) (Figure 2). The soil depth ranges from 30 to 90 cm (Figure 3) and the soils have medium to low water holding capacities. The total population in Adarsha watershed is 1 492
belonging to about 270 cultivating and four non-cultivating families. The average landholding per household is 1.4 ha (Shiferaw et al. 2002).

Consortium approach

An innovative model with a consortium of institutions, as opposed to a single institution, was formed for project implementation and technical backstopping. ICRISAT, M. Venkatarangiaya Foundation (MVF) an NGO, Central Research Institute for Dryland Agriculture (CRIDA), National Remote Sensing Agency (NRSA), District Water Management Agency (DWMA), Ranga Reddy District of Government of Andhra Pradesh along with farmers formed the consortium (Figure 4) (Wani et al. 2001). All the partners were working, either individually or in partnership with another institution, to conserve rainwater and manage the watershed sustainably.

Adarsha watershed was selected by ICRISAT, DWMA, and MVF in consultation with other stakeholders. The main criteria used in the selection were: existence of a large proportion of dryland farming, few water harvesting structures, and minimum interventions to conserve soil and water. Adarsha watershed was finally selected after a meeting with villagers in Gram Sabha, where villagers came forward to participate in the proposed watershed activities.

Promoting community participation

The participation of the local community i.e., farmers, is essential if watershed management is to have a successful impact. A successful partnership based on strong commitment by state and local agencies, community leaders and people is desirable. To promote community participation in the watershed for site selection, implementation and assessment of activities, various committees/groups were formed. It was recognized that to shift the community participation from contractual to a consultative and collegiate mode it was necessary to provide tangible private economic benefits to individuals. Such benefits could come from *in situ* rainwater conservation leading to increased farm productivity through the application of the IGNRM approach. Most importantly, full participation is necessary from the initial stage of watershed selection through the selection of crops, systems, and varieties, to the monitoring and evaluation of watershed activities. No subsidies were given for investments on individuals’ farms for technologies, inputs and conservation measures. The principle used was
that "users pay". Once individuals were able to realize the benefits of soil and water conservation they came forward to participate in other community activities in the watershed by becoming members of various organized groups as follows:

- **Watershed Association**: All the 270 farmers are members of the watershed association. The association is registered under the Registration of Societies Act, and is a sovereign body that decides every activity in the watershed.

- **Watershed Committee**: This is an executive body of the association and is headed by a chairperson who is unanimously elected. A secretary, who maintains the records and eight members representing different sections of the community form the other members of the committee.

- **Self-help groups**: Self-help groups were formed to undertake specific watershed management activities.

- **User groups**: User groups were formed to manage (operate and maintain) water-harvesting structures.

- **Women self-help groups**: Women were empowered to form self-help groups to undertake village-level enterprises for income generation. Ten such groups with 15 members each took up vermicomposting as an enterprise in Kothapally village.

Baseline survey

A detailed baseline survey of the watershed was conducted to study major socioeconomic and biophysical constraints to sustainable crop production. The following information was collected:

1. socioeconomic status of the farmers and landless people (household and

FIGURE 4 Farmer-participatory consortium approach for integrated watershed development

![Diagram showing the Farmer-participatory consortium approach for integrated watershed development](image-url)
demographic characteristics, land ownership, land use, livestock and other assets), crop production, cropping patterns, yields, markets and livelihood opportunities;

2 soil characteristics, climate, cropping systems, their productivity and inputs (GIS maps were prepared for soil types, soil depth and crops grown in the village);

3 soil, water, nutrient and pest management practices followed by the villagers;

4 production constraints, yield gaps and opportunities for crop intensification.

The results of the survey indicated that in Kothapally village: (i) dryland areas were more extensive than irrigated land; (ii) literacy was low; (iii) LABOUR was scarce; (iv) there was an inverse relationship between land size and fertilizer/pesticide use; (v) crop yields were low; (vi) there was not a single water harvesting structure in the village; and (vii) no income generating activities had been taken up by the villagers (Shiferaw et al. 2002).

Interventions to enhance productivity and income

Soil and water conservation measures

Using the baseline survey of the village and a detailed reconnaissance survey of the watershed, the watershed committee identified sites for soil and water conservation structures and other measures. ICRISAT provided technical support for cost-efficient water storage and soil conservation structures. The measures are categorized as community- and individual farmer-based.

Community-based interventions

These measures were implemented on common resources, viz. water courses, nala and wastelands. The committee members had identified 21 potential sites for water storage structures (small check dams), 270 sites for gully control structures, 11 gabion structures, 38 ha for field bunding, and a 500 m long diversion bund to avoid damage to crop lands. Fourteen water storage structures (one earthen and 13 masonry) with a capacity of 300 to 2,000 m³ water storage were constructed (Figure 5). Ninety seven gully control structures and 60 minipercolation pits, one gabion structure for increasing groundwater recharge, a 500 m long diversion bund and field bunding on 38 ha were completed.

Twenty-eight dry open wells, near nala (small streams), were recharged through runoff water flowing in the nala during runoff events. A users group was formed for each water storage structure, and the water collected in the storage structures was exclusively used for recharging the groundwater.

The total cost of all soil and water conservation structures was US$20,023 which included 14 check dams (US$16,586), 97 gully control structures of loose stones (US$1,555), 60 minipercolation tanks (US$924), a 500 m division drain (US$619) and runoff diversion pipe system to regenerate 28 abandoned dry wells.

Farmer-based interventions

Farmer-based soil and water conservation measures implemented in individual fields (Figures 6 and 7) (Wani et al. 2002) were broadbed and furrow (BBF) landform and contour planting to conserve in situ soil and water; use of the tropicultor for planting, fertilizer application
and weeding operations; field bunding (38 ha); and planting *Gliricidia* on field bunds to strengthen bunds, conserve rainwater and supply nitrogen-rich organic matter for *in situ* application to crops.

Several farmers evaluated BBF and flat landform treatments for shallow and medium-depth black soils using different treatment combinations. Farmers obtained 250 kg more pigeon pea and 50 kg more maize per hectare using BBF on medium-depth soils than from the flat landform treatment. Furthermore, even on the flat landform treatment farmers harvested 3.6 t maize and pigeon pea using improved management options compared to only 1.7 t maize and pigeon pea grain from their normal cultivation practices (Table 1). The farmers with shallow soils reported similar benefits from BBF landform and improved management options for other cropping systems. The rainfall during 1999 was 559 mm, 30% below normal and that received in 2000 was 958 mm, 31% above normal. Despite this variation in rainfall, the productivity of the crops marked a sustainable increase during 1999-2000 and 2000-01 (ICRISAT 2002).

TABLE 1 Productivity in on-farm trials at Adarsha watershed, 2001

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SOILS</th>
<th>LANDFORM</th>
<th>YIELD (kg ha⁻¹)</th>
<th>TOTAL SYSTEM PRODUCTIVITY (1+2) (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize/PP2</td>
<td>Shallow</td>
<td>BBF</td>
<td>1 750</td>
<td>380</td>
</tr>
<tr>
<td>Maize/PP</td>
<td>Shallow</td>
<td>Flat</td>
<td>1 680</td>
<td>290</td>
</tr>
<tr>
<td>Maize/PP</td>
<td>Medium</td>
<td>BBF</td>
<td>2 830</td>
<td>1 070</td>
</tr>
<tr>
<td>Maize/PP</td>
<td>Medium</td>
<td>Flat</td>
<td>2 780</td>
<td>820</td>
</tr>
<tr>
<td>Maize</td>
<td>Medium</td>
<td>BBF</td>
<td>3 000</td>
<td>-</td>
</tr>
<tr>
<td>Maize</td>
<td>Shallow</td>
<td>BBF</td>
<td>2 030</td>
<td>-</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Medium</td>
<td>BBF</td>
<td>3 000</td>
<td>-</td>
</tr>
<tr>
<td>Maize/PP</td>
<td>(Local farmers practice)</td>
<td>BBF</td>
<td>1 400</td>
<td>230</td>
</tr>
<tr>
<td>Sorghum/PP</td>
<td>(Local farmers practice)</td>
<td>Flat</td>
<td>470</td>
<td>115</td>
</tr>
<tr>
<td>Sorghum</td>
<td>(Local farmers practice)</td>
<td>BBF</td>
<td>1 010</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Main crop (maize/sorghum); 2. Component crop (pigeon pea -PP)
BBF - Broad-bed and furrow
Wasteland development and tree plantation

Common wasteland treatment involved by planting saplings of useful species along the roads, field bunds and *nalis*. Contour trenches at 10 m intervals with a 0.3 m height of bund were laid out. A custard apple plantation was undertaken by the farmers by planting on the bunds, and *Gliricidia* saplings were planted along the borders of the wasteland to serve as live fences. An avenue plantation was also adopted in the village as part of the village afforestation programme. Twenty five hundred fruit trees and teak plants were planted on field bunds (Figure 8).

FIGURE 8 Tree plantation on wasteland

Integrated nutrient management

The integrated nutrient management approach was adopted to enable good crop growth from conserved soil and water. The project adopted the INM approach with on-farm evaluation by farmers of the Adarsha watershed.

Detailed soil characterization

Detailed characterization of the soils showed they are low in available P (1.4 to 2.2 mg kg⁻¹ soil), available N (11 mg kg⁻¹ soil), zinc (Zn), boron (B), and sulphur (S) in addition to low in organic carbon. Farmers in the watershed evaluated B and S amendments. Amendments with B, S and B+S treated plots resulted in 13 to 29% increases in sorghum grain yield and 20 to 39% increases in maize grain yield (Table 2) (ICRISAT 2002).

Nutrient budgeting

Nutrient budgets were studied using stratified random sampling by dividing the watershed into three toposequences and farm holdings. This approach helped to calculate the nutrient budgets at a watershed level, and assisted in developing balanced nutrient management strategies. In Adarsha watershed, the balance for N, P and K were computed on 15 farmers’ fields who were following improved soil, water and nutrient management options along with conventional practices.

TABLE 2 Total productivity of sorghum and maize with boron and sulphur amendments at Adarsha watershed, Kothapally, 2001.

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>SORGHUM YIELD (kg ha⁻¹)</th>
<th>MAIZE YIELD (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRAIN</td>
<td>RESIDUES</td>
</tr>
<tr>
<td>Control</td>
<td>1 460</td>
<td>2 800</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>1 650</td>
<td>3 030</td>
</tr>
<tr>
<td>Sulphur (S)</td>
<td>1 890</td>
<td>3 320</td>
</tr>
<tr>
<td>B+S</td>
<td>1 800</td>
<td>3 490</td>
</tr>
</tbody>
</table>
The N, P and K nutrient uptake by maize/pigeon pea intercrop system and sole maize was greater in the improved BBF system compared to that on the flat landform, and was translated into higher crop yield on the BBF landform. The balances also showed that all systems were depleting N and K from soils, and that more P is applied than removed by crops (Table 3) (ICRISAT 2002).

In-situ generation of N-rich green manure

On-station watershed studies at ICRISAT have shown that *Gliricidia* loppings provided 31 kg N ha\(^{-1}\) yr\(^{-1}\) without adversely affecting crop yield (ICRISAT 2002). Farmers have planted about 50,000 *Gliricidia* saplings on bunds for generating N-rich organic matter.

Worm farming to boost income

Training on vermicomposting was imparted to 10 women self-help groups (SHG). *Parthenium*, an obnoxious weed, agricultural waste, earthworms, rock phosphate and cow dung slurry are the ingredients for vermicomposting. The SHGs have taken up vermicomposting as a microenterprise to generate income. Participatory evaluation of plots with applications of 3 and 5 t ha\(^{-1}\) vermicompost resulted in increases of 4.8 and 5.8 t ha\(^{-1}\) tomato yield when compared to plots to which 3.5 t ha\(^{-1}\) of a conventional compost had been applied (Figure 9) (ICRISAT 2002).

Village-level HNPV production

The project consortium identified and initiated the training, production, storage and usage of *Helicoverpa* nuclear polyhedrosis virus (HNPV) on different crops for minimizing pest damage. The farmers quickly adopted the technology, and produced 2,000 larval equivalent (LE) of

TABLE 3 Nutrient budgeting studies in farmers’ fields, Adarsha watershed, Kothapally, 1999–2000 (kg ha\(^{-1}\) yr\(^{-1}\))

<table>
<thead>
<tr>
<th>CROPPING SYSTEM</th>
<th>TOTAL INPUT</th>
<th>TOTAL OUTPUT</th>
<th>BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Maize/pigeon pea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBF</td>
<td>28.3</td>
<td>16.4</td>
<td>17.1</td>
</tr>
<tr>
<td>Flat</td>
<td>32.2</td>
<td>13.8</td>
<td>21.2</td>
</tr>
<tr>
<td>Sole Maize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBF</td>
<td>20.5</td>
<td>10.0</td>
<td>0</td>
</tr>
<tr>
<td>Flat</td>
<td>9.0</td>
<td>10.0</td>
<td>0</td>
</tr>
<tr>
<td>Sole Sorghum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat</td>
<td>18.3</td>
<td>9.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

BBF - Broad-bed and furrow
HNPV, and used it on cotton, pigeon pea and chickpea. ICRISAT supplied an additional 11,650 LE of HNPV for use on these crops.

The project has given high priority to training village-level scouts to identify various pests and their natural enemies in different crops before the cropping season, and has assisted them in monitoring the pests during the cropping season. Farmers were also trained at ICRISAT on pest control techniques for cotton, chickpea and pigeon pea.

Monitoring

The following parameters were monitored to assess impacts, and to better understand the processes of integrated watershed management.

- An automatic weather station with a data logger was installed to collect data on rainfall, air and soil temperature, solar radiation and wind. Rainfall data was also collected at five other locations across the watershed to assess the spatial variability of rainfall.
- Changes in cropping pattern and cropping systems in farmers’ fields along with productivity and incomes were monitored.
- Sixty-two open wells in the watershed were georeferenced, and periodic monitoring of water level and use was carried out.
- Water quality was monitored in all the wells and water storage structures in the watershed. Sediment samples were collected from the structures to help understand the runoff and erosion processes.
- Runoff and soil loss were monitored using automatic water level recorders and sediment samplers (Figure 10).
- Satellite monitoring was used for estimating vegetation cover.
- Periodic pest monitoring was carried out to assess pest infestation, and to take timely and cost-effective integrated pest management (IPM) measures.

Impact assessment

The normal annual rainfall at the watershed is about 890 mm received mainly in June-October (85%). The daily rainfall recorded during the past four years (1998-2002) is shown in Figure 11. There is a large variation in rainfall amount and distribution between years and within a season. The rainfall received in 1998 and 2000 was 36 and 47% more than normal, and in the other years the deficit ranged from 24% to 36%. High intensity and large rains were common at Kothapally as elsewhere in the SAT.

Reduced runoff and soil loss

The soil and water management measures in the treated watershed included field bunding, gully plugging and check dams across the main water course, along with improved soil, water, nutrient and crop management technologies. Untreated areas represent farmers’ practices without any technological intervention. There was a significant reduction in runoff from the treated watershed compared to the untreated watershed in 2000 and 2001 (Table 4). In the high rainfall year (2000) a significant reduction in runoff from the treated watershed (45% less than the untreated area) was observed. Even during a subnormal rainfall year (2001), a significant reduction in runoff volume (29% less than the treated area) was recorded. Daily runoff
volumes and the effect of high intensity and large rains during 2000 on the treated and untreated watersheds are shown in Figure 12. The rainfall on 24 August alone accounted for about 70% of the total annual runoff (Pathak et al. 2002).

Two years (1999 and 2001) out of three years were low rainfall years. In addition to low rainfall, most rainfall events were low intensity resulting in very low seasonal runoff during 1999 and 2001. In general, during low runoff years the differences between the treated and untreated watersheds are very small. During a good rainfall year, i.e., 2000, a significant difference in runoff was observed between treated and untreated watersheds (Table 4). Soil loss was measured from treated and untreated watersheds during 2001, and a significant reduction in soil loss (only 1/3) was found from treated compared to untreated watershed.

TABLE 4 Seasonal rainfall, runoff and peak runoff rates from the subwatershed, Adarsha watershed, 1999–2001

<table>
<thead>
<tr>
<th>YEAR</th>
<th>RAINFALL</th>
<th>UNTREATED</th>
<th>TREATED</th>
<th>UNTREATED</th>
<th>TREATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>584</td>
<td>16</td>
<td>NR</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2000</td>
<td>1161</td>
<td>118</td>
<td>65</td>
<td>1.04</td>
<td>*</td>
</tr>
<tr>
<td>2001</td>
<td>612</td>
<td>31</td>
<td>22</td>
<td>1.48</td>
<td>0.51</td>
</tr>
</tbody>
</table>

1. Untreated = control with no development work, Treated = with improved soil water and crop management technologies, NR = not recorded
Improved groundwater levels

There are 62 open wells in the Adarsha watershed, most of which occur along the main watercourse. All the wells were georeferenced, and water levels were monitored continuously on a fortnightly basis. There were 15 bore wells before project initiation, and 55 new bore wells were dug during the project. There was a significant improvement in the yields of most wells, particularly those located near check dams (Figure 13). Due to additional groundwater recharge, a total of 200 ha were irrigated in post-kharif season and 100 ha in post-rabi season, mostly vegetables, during the 2002-2003 cropping season. Based on three years (1999–2001) of observations of groundwater levels in open wells, the estimated mean average rise of ground water was 415 cm. Thus the average contribution of the seasonal rainfall to groundwater in the watershed could be estimated at approximately 27% of the seasonal rainfall (assuming the specific yield of the aquifer material as 4.5%) (Pathak et al. 2002).

Integrated pest management

IPM was adopted to optimize crop productivity with integrated soil, water, crop and nutrient management in the watershed. The following IPM activities were implemented by the project.

- Crop surveys were carried out to determine the plant protection practices adopted within the village. The surveys indicated that farmers use chemical pesticides against insect pests and *Helicoverpa*, which is the key pest on a number of crops.

 - *Helicoverpa*, a major pest on chickpea,
FIGURE 13 Groundwater levels in open wells at Adarsha watershed, 1999-2001

1999

Water level in well (m)

2000

Water level in well (m)

2001

Water level in well (m)

NEAR CHECK DAM

AWAY FROM CHECK DAM
pigeon pea and cotton, was monitored using pheromone traps (Figure 14).

- Effective indigenous methods like shaking pod borers from pigeon pea and using them for pest management were used (Figure 15).
- Pest tolerant varieties were used.
- Biological control measures using *Helicoverpa* nuclear polyhedrosis virus (HNPV) were adopted.
- Precise timing and application of pesticide treatments were ensured.
- Bird perches were installed in fields to encourage birds to alight on the perches and feed on *spodoptera* and *Helicoverpa* larvae.

Improved land cover (vegetation)

The land cover and vegetation density in Adarsha watershed was studied using satellite images to assess the impact of various interventions on these parameters. The IRS-IC and -ID LISS-III images in April 1996 and April 2000, and the NDVI images generated from these, are shown in Figure 16. Examination of the images from 1996 and 2000 revealed an increase in vegetation cover from 129 ha in 1996 to 200 ha in 2000 (Dwivedi et al. 2000).

Increased productivity

Farmers evaluated improved crop management practices (INM, IPM, soil and water management) together with researchers. With improved technologies farmers obtained high maize yield increase of 2.2 to 2.5 times the yield of sole maize (1.5 t ha\(^{-1}\)) in 1998 before improved practices were applied (Table 5). In the case of intercropped maize with pigeon pea, improved practices resulted in 1.7 to 3.8 times the yields obtained with farmers’ traditional unimproved practices. For sole sorghum the improved practices increased yields by a factor of 2.3 to 3.0 compared to the 1998 baseline yield of 1.070 kg ha\(^{-1}\). For intercropped pigeon pea the yield was increased five times in 2000 (ICRISAT 2002). Of all the cropping systems studied in the Adarsha watershed,
maize/pigeon pea and maize/chickpea proved to be most beneficial with benefit-cost ratios 2.67 (Table 6). Farmers could gain around Rs 16,500 and 19,500 from these two systems, respectively. Sole sorghum, sole chickpea and sorghum/pigeon pea intercrop also proved to be beneficial whereas sorghum, maize, and green gram traditional systems were significantly less beneficial to farmers. Cotton grown with traditional management practices resulted in a net loss (ICRISAT 2002).

Impact on household incomes

The basic goal of watershed management in rainfed systems is to reduce rural poverty and improve livelihood security, while protecting or enhancing the sustainability of the environment and the agricultural resource base. In order to assess the impact of integrated watershed management interventions on poverty and the livelihoods of rural communities in Kothapally,
ICRISAT collected cross-sectional panel data from a sample of randomly selected households from villages within and outside the watershed. A census of 825 households in the five neighbouring villages outside the watershed, and 308 households within the watershed preceded the detailed household survey. The villages located just outside the Koopathally catchment are used as a control group. Because of their geographical proximity, the adjoining villages just outside the watershed have comparable socioeconomic and biophysical conditions, but with the major difference of not being involved in the watershed development project. A random sample of 60 households from each group was surveyed using a detailed survey procedure in 2002. Production, consumption and input-output data were collected from all plots operated by the sampled households (Table 7).

Analysis of this data shows that average net returns per hectare for dryland cereals and pulses are significantly higher within the watershed. For cereals, the returns to family labour and land (net income) are 45% higher even with irrigation, while the net returns on rainfed cereal crops have more than doubled. Similarly for pulse crops, per hectare net returns within the watershed are more than double with irrigation, and almost double without irrigation. This is mainly because the watershed

TABLE 6 Total productivity, cost of cultivation and income for different crops at Adarsha watershed during 1999–2000

<table>
<thead>
<tr>
<th>CROPPING SYSTEM</th>
<th>TOTAL PRODUCTIVITY (g ha(^{-1}))</th>
<th>COST OF PRODUCTION (Rs ha(^{-1}))</th>
<th>TOTAL INCOME (Rs ha(^{-1}))</th>
<th>PROFIT (Rs ha(^{-1}))</th>
<th>BENEFIT-COST RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize/pigeon pea (improved)</td>
<td>3 351</td>
<td>6 203</td>
<td>22 709</td>
<td>16 506</td>
<td>2.67</td>
</tr>
<tr>
<td>Sorghum/pigeon pea (improved)</td>
<td>2 285</td>
<td>5 953</td>
<td>17 384</td>
<td>11 431</td>
<td>1.92</td>
</tr>
<tr>
<td>Cotton (traditional)</td>
<td>980</td>
<td>15 873</td>
<td>24 389</td>
<td>–8 516</td>
<td>0.54</td>
</tr>
<tr>
<td>Sorghum/pigeon pea (traditional)</td>
<td>1 139</td>
<td>4 608</td>
<td>11 137</td>
<td>6 529</td>
<td>1.42</td>
</tr>
<tr>
<td>Maize/chickpea (improved)</td>
<td>4 319</td>
<td>7 317</td>
<td>26 774</td>
<td>19 457</td>
<td>2.66</td>
</tr>
<tr>
<td>Chickpea (improved)</td>
<td>840</td>
<td>4 886</td>
<td>17 292</td>
<td>12 406</td>
<td>2.54</td>
</tr>
<tr>
<td>Sole maize (improved)</td>
<td>3 150</td>
<td>4 578</td>
<td>13 532</td>
<td>8 954</td>
<td>1.96</td>
</tr>
<tr>
<td>Sorghum (traditional)</td>
<td>975</td>
<td>3 385</td>
<td>6 997</td>
<td>3 612</td>
<td>1.07</td>
</tr>
<tr>
<td>Sole sorghum (improved)</td>
<td>2 800</td>
<td>4 352</td>
<td>15 084</td>
<td>10 732</td>
<td>2.47</td>
</tr>
<tr>
<td>Maize (traditional)</td>
<td>1 600</td>
<td>3 599</td>
<td>7 281</td>
<td>3 682</td>
<td>1.02</td>
</tr>
<tr>
<td>Greengram (traditional)</td>
<td>600</td>
<td>4 700</td>
<td>9 000</td>
<td>4 300</td>
<td>0.91</td>
</tr>
<tr>
<td>Chickpea (traditional)</td>
<td>–</td>
<td>4 260</td>
<td>11 600</td>
<td>7 340</td>
<td>1.72</td>
</tr>
<tr>
<td>Sole pigeon pea (improved)</td>
<td>1 090</td>
<td>4 890</td>
<td>17 120</td>
<td>12 230</td>
<td>1.35</td>
</tr>
</tbody>
</table>

TABLE 7 Net income from crop production activities (Rs 1 000 ha\(^{-1}\))

<table>
<thead>
<tr>
<th>CROPS</th>
<th>WITHIN THE WATERSHED WITH IRRIGATION</th>
<th>WITHOUT IRRIGATION</th>
<th>OUTSIDE THE WATERSHED WITH IRRIGATION</th>
<th>WITHOUT IRRIGATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>11.17</td>
<td>6.04</td>
<td>7.69</td>
<td>2.90</td>
</tr>
<tr>
<td>Pulses</td>
<td>8.86</td>
<td>3.81</td>
<td>4.08</td>
<td>1.92</td>
</tr>
<tr>
<td>Cotton</td>
<td>17.83</td>
<td>12.15</td>
<td>17.47</td>
<td>12.03</td>
</tr>
<tr>
<td>Vegetables</td>
<td>17.17</td>
<td>7.48</td>
<td>11.98</td>
<td>6.45</td>
</tr>
<tr>
<td>All crops</td>
<td>13.76</td>
<td>7.78</td>
<td>10.31</td>
<td>5.83</td>
</tr>
</tbody>
</table>
development approach based on IGNRM includes improved cultivars of sorghum (cereals), chickpea and pigeon pea (pulses) developed by ICRISAT, along with improved management of water and soil fertility. Adoption of the improved varieties has not only increased crop yields, but also enhanced the economic profitability of other soil and water conservation investments, which might otherwise be economically unattractive to farmers.

In addition to the impacts on the net productivity of land, we also compared household incomes among the households within and outside the watershed. The results are striking. Average household income (in thousands of Rupees) from crop production activities within and outside the watershed is 15.4 and 12.7, respectively. The respective per capita income (in thousands of Rupees) is 3.4 and 1.9. This shows a significant impact of watershed intervention activities (initiated in 1999) towards poverty reduction in Kothapally watershed, through increased incomes for the poor from crop production activities. The average income (in thousands of Rupees) from agricultural wages and non-farm activities is 17.7 and 14.3 within and outside the watershed, respectively. The increased availability of water (and hence supplementary irrigation), and better employment opportunities in watershed development-related activities, have contributed to the diversification of income opportunities and reduced vulnerability to drought and other shocks.

Changes in cropping pattern

Analysis of prevalent cropping systems, their area and previous history before watershed management interventions, provides insight into the way the watershed management approach has benefited farmers. Kothapally was predominantly a cotton growing area prior to project implementation. The area under cotton was 200 ha in 1998, and maize, chickpea, sorghum, pigeon pea, vegetables and rice were also grown.

After 4 years of activities in Adarsha watershed, the area under cotton cultivation decreased from 200 ha to 80 ha (60% decline), with simultaneous increases in maize and pigeon pea areas. The area under maize and pigeon pea increased more than three-fold from 60 ha to 200 ha and 50 ha to 180 ha respectively, within four years, and the area under chickpea also increased two-fold during same period (Table 8) (ICRISAT 2002).

Capacity building of NARS

Key change agents like watershed committee members and agricultural and extension officials were trained on different aspects of integrated watershed management (IWM).

TABLE 8 Area (ha) under various crops in Adarsha watershed, Kothapally

<table>
<thead>
<tr>
<th>CROP</th>
<th>BEFORE WATERSHED MANAGEMENT ACTIVITIES BEGAN (1998)</th>
<th>AFTER 4 YEARS OF WATERSHED MANAGEMENT ACTIVITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999</td>
<td>2000</td>
</tr>
<tr>
<td>Maize</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Sorghum</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Chickpea</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Vegetables</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Cotton</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>Rice</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>
Special emphasis was given to increasing awareness of new management options to women farmers, as they play a key role in the adoption of new technology. Women were trained on vermicomposting technology, and educated youth were trained in skilled activities like HNPV production and vermicomposting, which enabled them to generate income.

Hands-on training on various components of IWM was given to partner NARS scientists and technicians (Wani et al. 2002), and research scholars and apprentices from various universities conducted their research using the IWM approach. Other capacity-building activities were:

- About 700 farmers from all over India were trained on integrated watershed management at Adarsha watershed (Figure 17).
- One hundred and forty agricultural and government officials were trained in various aspect of integrated watershed management.
- Fourteen research scholars and several apprentices were trained on different aspects of watershed management.
- About 1150 people visited Adarsha watershed to become familiarized with IWM activities.
- Farmers’ days were conducted in Adarsha watershed at Kothapally, and all farmers in the surrounding village were invited to become familiarized with IWM.
- Field days were conducted in Kothapally and were very successful in getting messages across to several provincial and district authorities, technology transfer departments, research managers, and policy makers.

Public awareness initiatives

An interactive computer-based tutorial on Integrated Watershed Development and Management was developed. Training material booklets and brochures on vermicomposting, and *Gliricidia for in situ* generation of organic matter, were prepared in English and Telugu. Several TV programmes for farmers covering IWM at Kothapally were shown at the regional and national levels. Several videos in Telugu on the use of the tropicultor, vermicomposting, improved cropping systems and IWM were prepared and broadcasted on TV programmes for farmers.
Information technology and watershed management

Details of this project are retained on the web site: (http://www.icrisat.org/gt3/watersheds/ ADBwsheds/wshedshome.htm) to enable farmers, scientists, policy makers, extension agents and others to access information (Figure 18). This information, coupled with observations and measurements made by the watershed group, provides a means to characterize, assess, analyse and maintain the status and health of the benchmark watershed at Kothapally.

FIGURE 18 Information technology and watershed management web page, Adarsha watershed, Kothapally
Flow of technology from Adarsha watershed to neighbouring villages

The adoption of improved technologies in Adarsha watershed was observed by farmers from the nearby watersheds of Nawabpet in Ranga Reddy District and Adilabad District. This led to farmers in these watersheds purchasing tropicultors for their field operations in order to construct BBF landforms. They were also keenly interested in other technologies, such as improved cropping systems, improved varieties, vermicomposting, HNPV production units, *Gliricidia* plantations and other soil and water management practices.

Scaling up

New scientific tools such as remote sensing, geographical information systems (GIS), digital terrain modelling for estimating runoff and soil loss, and crop simulation modelling for the analysis of long term potential productivity were used. These tools provide the capabilities for extrapolating and implementing technologies to other larger watersheds. To scale-up the benefits from the innovative farmer-participatory consortium model for managing watersheds at Kothapally, the following process shown in Figure 19 is being adopted.

In the process of scaling-up it is envisaged that 3-4 nucleus watersheds are selected in each

FIGURE 19 Scaling-up the benefits

![Diagram showing the flow of technology from NGOs to nucleus watersheds and their impact on poverty reduction.](image-url)
district. The process of selecting nucleus watersheds is a guided process as mentioned for Kothapally. An additional requirement is that the project-implementing NGOs should have the capacity and a good track record of implementing watershed projects in the district. The nucleus watershed-implementing NGO becomes the pilot trainer for other NGOs in the district. In addition, the pilot NGO transfers the lessons learnt from the nucleus watershed to other watershed projects implemented by their staff in the area, and so knowledge dispersion takes place. Each nucleus watershed has four satellite watersheds, and the farmers and SHG members from the nucleus watershed become the master trainers in the district for the satellite watersheds.

Emphasis in this project is on capacity building and empowerment of the NGOs, extension workers, farmers, and SHG members. In order to further extend knowledge on the management of NRs through IGNRM, information and communication technology (ICT) is used. Currently, through the DFID-supported Andhra Pradesh Rural Livelihoods Programme (APRLP), this scaling-up approach has been extended to 50 watersheds (10 nucleus and 40 satellite) in three districts of Andhra Pradesh, and with support from Sir Dorabji Tata Trust it has been extended to two districts of Madhya Pradesh and one district in Rajasthan.

Adarsha watershed has served as a benchmark or nucleus watershed, and has already demonstrated the benefits of integrated watershed management. The technology has been adopted in watersheds of neighbouring villages and other areas by farmers with little technical support from the consortium. The satellite watersheds, which are similar in terms of soils, climate and socioeconomic patterns, can achieve broad impacts by adopting these technologies. The ICRISAT consortium focuses on training farmers, development agencies and NGOs through demonstrations of different technologies on benchmark watersheds, and acts as a mentor for technology backstopping. The farmers’ community, through village institutions, takes responsibility for all activities of implementation and monitoring. Government and non-government agencies catalyse the process. The key factor while evaluating and scaling-up this approach is that the concerned line departments of the government need to be included in the consortium from the beginning, along with other partners.

Future issues

1. The consortium of national agricultural research systems, NGOs, government departments, extension agencies and farming communities should be multidisciplinary, and further strengthened to provide technical backstopping to optimize the sustainable use of natural resources for increased productivity.

2. Gradually, the watershed project management should reside in the community. Various aspects of watershed development and management could be handed over to community organizations over time when they have been adequately trained. This will sustain development.

3. There is a need to investigate the essential elements and mechanisms of village community participation in the development and management of natural resources.

4. Further research is needed to strengthen village-level institutions for watershed development and management.

5. Capacity building is a continuous process. The NARS scientists and staff of other organizations involved in the collaborative projects on watershed management need to be trained in the application of new scientific tools such as remote sensing, GIS and systems modelling.

6. Socioeconomic and policy issues to promote the equitable sharing of costs and benefits of improved natural resources management need to be researched.
There is a need to investigate and explore a range of opportunities through on-farm and off-farm activities to encourage and promote village level microenterprises, such as giving value addition to agricultural produce to help the landless, educated youth and women to ensure a more equitable sharing of the benefits of watershed management projects.

Watershed management projects need to become holistic livelihood projects, with soil and water conservation activities used as entry points. By adopting the IGNRM approach for all activities in the watersheds, these projects should become true livelihood programmes. That is the challenge to be tackled.

Acknowledgements

We acknowledge Mr Aziz Ahmed, Additional Director (up to July 2002) and Mr P Ramalinga Reddy, Assistant Project Director, DWMA, Ranga Reddy district, Andhra Pradesh, for engineering support; Mr Y. Rajendra Prasad, Coordinator and Dr Shantha Sinha, Director, MV Foundation and Mr V Naveen Kumar, Director, Rural Education and Agricultural Development (READ), for their help in mobilizing community support; Ms Rani Kumudini (up to July 2001) and Mr Ajay Jain (from Aug 2001) District Collectors, Ranga Reddy District, for their encouragement; Mr Anil Puneta, Commissioner, Rural Development, Government of Andhra Pradesh for his continued support and encouragement. We also thank Dr R. S. Dwivedi, NRSA for satellite imageries, M/s L.S. Jangawad, R. Sudi, V. Rameshwara Rao, G. Pardhasaradhi and M. Babu Rao for their technical assistance, and Dr R. C. Sachan for his help in preparing the case study.
References

